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PART 1

TRANSFER OPERATER-BASED APPROACH FOR
DOMAIN OF ATTRACTION COMPUTATION
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OVERVIEW

The problem of computation of domain of attraction (DA) is of great practical interest given
the importance of the problem in various engineering and physical systems. Examples include
DA computation in power systems, chemical process, aircraft control, biological systems, and
ecology.

Most of the existing methods for the computation of DA are Lyapunov functions based and
are restricted to DA computation of an equilibrium point or at best periodic solution. There
exists no method for DA computation of complex steady state such as chaotic attractor or
sets consisting of quasi-periodic motion. Such steady states are often exhibited by complex
dynamical systems. Examples include biological systems and synchronized state of coupled
oscillators. Existing methods for DA computation are either developed for polynomial vector
fields or relies on the point-wise description of the Lyapunov functions that describes DA.
However complex dynamics can often be described most efficiently on sets as opposed to on
points.

In this part, we propose a transfer operator-based method for the computation of DA. This
proposed approach is used for almost everywhere global stability verification of an attractor
set in nonlinear dynamical system. The basic idea behind the transfer operator approach
is to replace the finite dimensional nonlinear evolution of dynamical system with a linear,
albeit infinite dimensional, evolution described by linear transfer operator. This linear transfer
operator is called as Perron-Frobenius (P-F) and is used to propagate sets or measure supported
on sets in the phase space. The finite dimensional approximation of the P-F operator can be
obtained using set-oriented numerical techniques developed by Dellnitz and group.

We extend the application of P-F operator along with set-oriented numerical methods for
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the computation of DA. We show that the iterative algorithm based on P-F operator is efficient
to compute the DA for any nonlinear system since it can not only characterize the DA for the

nonlinear system with equilibrium dynamics but also system with complex non-equilibrium

dynamics.
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CHAPTER 1. INTRODUCTION

This introduction is divided into three sections. Section 1.1 briefly introduces P-F operator.
Section 1.2 describes the motivations for computation of DA. And section 1.3 offers a review

of existing papers.

1.1 Preliminaries

In this section, we present an introduction of P-F operator. This helps the reader to get
an intuitive understanding of P-F operator before we define it strictly.

For a dynamical system, one can associate two different linear operators, called Koopman
operator and P-F operator. While the dynamical system describes the evolution of an initial
condition, the P-F operator describes the evolution of uncertainty in initial conditions. Set
oriented numerical methods have recently been used to approximate the infinite dimensional P-
F operator using their finite dimension counterpart [1]. In addition, the spectral analysis of the
P-F operator gives a description of the asymptotic dynamics of nonlinear dynamical systems.
In particular, the eigenfunction with eigenvalue 1 characterizes the invariant set capturing the
long term asymptotic behavior of the system. Spectrum of the P-F operator on the unit circle

has the information about the cyclic behavior of the system.

1.2 Motivations

In this section, we present the motivations for computation of DA of a nonlinear system.
When the origin « = 0 is asymptotically stable, we are often interested in determining how
far from the origin the trajectory can be and still converge to the origin as t approaches oo.

This gives rise to the definition of the region of attraction (also called region of asymptotic
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stability, domain of attraction, or basin) [2]. In this thesis, we use the terminology domain of
attraction (DA).

For a linear system, the fact that an equilibrium point is locally asymptotically stable
guarantees that an asymptotically stable behavior of the system around the equilibrium point.
However, this is not true for nonlinear system. As for a nonlinear system, the locally asymp-
totic stability merely ensures that there exists a neighborhood of the equilibrium point such
that all trajectories of the system converge to the equilibrium point for any initial condition in
the neighborhood. Accordingly, a further investigation on the extension of the neighborhood
is necessary in order to find a correct initialization of the system. Meanwhile, this is a problem
of fundamental importance to be used in real plants where an incorrect initialization of the
system may result in erroneous output[3]. For example, this problem is critical for those expen-
sive and/or dangerous plants such as aircrafts, nuclear reactors, chemical plants, etc..., where
unstable behaviors are not acceptable for disastrous consequences to which they could lead.
Besides, the computation of DA is an important tool in controller design since perturbations
from the equilibrium point within the DA are guaranteed to stay in it and converge to the
equilibrium point.

It is well known that the DA of an equilibrium point is a complicated set and there exists
no tractable analytic method to characterize the DA in the most cases. Recently, various

numerical methods are proposed to estimate the DA for nonlinear systems.

1.3 Literature Review

In this section, we review existing literatures regarding estimation of DA. Most of the
existing methods for computation of DA are Lyapunov functions based. Specifically, given a
Lyapunov function for the equilibrium point, any Lyapunov function level set included in the
region where the time derivative of Lyapunov function is negative is guaranteed to belong to
the DA.

In [4], the paper deals with the problem of the estimation of regions of asymptotic stability

for continuous, autonomous, nonlinear systems. Above all, a comprehensive survey of the
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existing methods such as Lyapunov methods including Zubov method, La Salle method, and
non-Lyapunov methods are provided. In addition, a “trajectory reversing method” allowing
the DA estimation with the support of suitable topological considerations is proposed. Finally,
several examples show the efficiency of this method for low order (second and third) systems.
However, all those methods surveyed in this paper and the “trajectory reversing method” itself
are restricted to DA computation of an equilibrium point or at best a limit cycle.

Due to the recent development in polynomial optimization based on the sum of square
relaxations [5], it is possible to search for polynomial Lyapunov functions for systems with
polynomial or rational dynamics. In [6], the problem of computing bounds on the DA for
systems with polynomial vector field is considered. A methodology utilizing information from
simulations to generate Lyapunov function candidates satisfying necessary conditions for bi-
linear constraints is proposed. The suitable Lyapunov function candidates are solved by linear
sum-of-squares optimization problems. Qualified candidates are utilized to compute provably
invariant subsets of the DA and to initialize various bilinear search strategies for further opti-
mization.

In [7], special emphasis is laid on elaborating the connections between modern results of
real algebraic geometry and Lyapunov’s stability theory, namely between the positive defi-
nite polynomials and the direct method of Lyapunov. The estimation problem can thereby
be reduced to solve a sequence of low non-convexity-rank bilinear matrix inequalities (BMI)
optimization problems.

In [8], the author presents using bilinear sum of squares programming for enlarging a
provable region of attraction of polynomial systems using polynomial functions. In order to
keep the number of decision variables low, the author presents the use of composite Lyapunov
functions. In addition, the author presents a method to find the outer bounds of attractive
invariant set for polynomial system.

In [9], the asymptotically stable equilibrium points of polynomial systems have been in-
vestigated. A new algorithm for the computation of a subset of the DA based on a quadratic

Lyapunov function has been presented.
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From above, we know all methods presented in these papers can only be used to estimate
the DA for the polynomial system. However, most real systems are non-polynomial systems, for
example, pendulums, chemical reactors, and systems with saturations. Therefore, a method to
determine the DA for non-polynomial systems is critical. In [10], a strategy for estimating the
DA for non-polynomial systems via Lyapunov functions is proposed. Specifically, the author
provides a strategy to estimate the DA of equilibrium points for non-polynomial systems via
Lyapunov functions and Linear Matrix Inequality (LMI), based on the use of Taylor expansions
and the parameterization of their remainders inside a convex polytopes. Furthermore, the
author has offered conditions for non-conservative in case of fixed Lyapunov functions which
are essential in order to obtain less conservative estimates in the case of variable Lyapunov
functions.

In short, there exists no method for DA computation of complex steady state such as
chaotic attractor or sets consisting of quasi-periodic motion. For example, biological systems
show such steady states. Besides, we know existing methods for DA computation are either
developed for polynomial vector fields or rely on the point-wise description of the Lyapunov
functions that describes DA. However complex dynamics can often be described most efficiently

on sets as opposed to on points.
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CHAPTER 2. TRANSFER OPERATOR APPROACH FOR
COMPUTING DOMAIN OF ATTRACTION

In this chapter, we extend the application of P-F operator along with set-oriented numerical
methods for the computation of DA. The advantage of the proposed method over existing
approaches is that it can be used for DA computation of general attractor set with the only
requirement that the system mapping is differentiable function of the states.

The organization of the chapter is as follows. In section 2.1, we summarize the results on
the application of transfer operator for global almost everywhere stability verification. The
set-oriented numerical method for the finite dimensional approximation of the linear transfer
operator are discussed in section 2.2. Our main result on the iterative approach for the com-
putation of DA based on the finite dimensional approximation of the P-F operator is presented

in section 2.3. In section 2.4, simulations for different systems are presented.

2.1 Lyapunov Measure for Stability

Definition 1 (Markov operator). Let (X, A, u) be a measure space. Any linear operator P :

L' — L' satisfying

1. Pf>0 forf>0,felL!

2 \PfIl=Ifll for f=0,feL
1s called the Markov operator.

Definition 2 (Invariant measure). Invariant measure is a measure pu € pu(X) that satisfies

u(A) = /X p(a, A)du(z)
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for all A € B(X).

Definition 3 (Fixed point). If P is a Markov operator and, for some f € L', Pf = f, then f

is called a fixed point of P.

Definition 4 (Measurable transformation). Let (X, A, u) be a measure space. A transforma-

tion S': X — X is measurable if
S7H(A)e A forall Ae A

Definition 5 (Nonsingular transformation). A measurable transformation S : X — X is
measurable on a measurable space (X, A, 1) is nonsingular if 1(S~1(A)) =0 for all A € A
such that pu(A) = 0.

In this section, a discrete-time dynamical system with an attractor set A described by

following equation

Tnt1 = T(xp) (2.1)

where z,, € X C RY a compact set is considered. The mapping 7 : X — X is assumed to be
differentiable and nonsingular.
B(X) denotes the Borel o-algebra on X and M(X) is the vector space of real valued

measure on X. The attractor set A for the dynamical system T is defined as follows:

Definition 6 (Attractor). A set A C X is said to be T invariant if T(A) = A. A closed T
invariant set A is said to be attractor set if there exists a neighborhood V- C X of A such that
w(x) C A for all x € V and there exists no strictly smaller set A C A that satisfies the above

property. V is called the local neighborhood of A and w(x) is the w-limit set of x.

Remark 7. The important point of above definition is that it does not require the local stability
(in the sense of Lyapunov) of the invariant set A and hence allows for a broad class of attractor

sets [11].

In [11], transfer operator-based framework was introduced to verify weaker notion of almost

everywhere stability of an attractor set and defined as follows:
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Definition 8 (Almost everywhere stability). The attractor set A for the dynamical system
T: X — X is said to be almost everywhere stable with respect to finite non-negative measure
m € M(A°) if
m{zre A :w(z) L A} =0
where w(x) is w-limit set of x.
The fundamental object of interest in the proposed transfer operator framework is the
so-called linear Perron-Frobenius (P-F) operator. The linear P-F operator associated with

the dynamical system 7' propagates uncertainty in the phase space and acts on the space of

measures. The P-F operator is defined as follows:

Definition 9 (Perron-Frobenius operator). The linear P-F operator associated with dynamical

system T : X — X is denoted by P : M(X) — M(X) and is defined as follows:

P)(B) = /X xB(T(@))du(z) = w(T~(B))

where xp(x) is the indicator function of the set B C X and T~'(B) is the inverse image of

set B.

The almost everywhere stability of the attractor set A is studied using the restriction
of the P-F operator on the attractor set A and the complement of the attractor set A°.
The restriction of the P-F operator on A and A° are denoted by Py : M(A) — M(A) and
Py : M(A°) — M(A°) respectively and are defined as follows:

Pojio](Bo) = /A x50 (T(2))dpio )

[P1a](Br) = /,4c x5 (T(@))dpa(z) = (T7(B1) N A°)

where g € M(A), u1 € M(A), By € B(A), and By € A°. These restriction of P-F operators
are used to define Lyapunov measure, which is used to verify global almost everywhere stability
of an attractor set \A. In next section, we briefly summarize the main results from [11] on the

almost-everywhere stability, verification using Lyapunov measure.
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In [11], Lyapunov measure and Lyapunov measure equation were introduced for almost
everywhere stability verification of an attractor set 4. The Lyapunov measure is defined as

follows:

Definition 10 (Lyapunov measure). Let U(e) be the € neighborhood of the attractor set A.
The Lyapunov measure is defined as any non-negative measure ji € M(A®) which is finite on

B(X \ Ul(e)) and satisfies following inequality
[Puji(B) < afi(B) (2.2)
for all set B € B(X \ Ul(e)) and for every e > 0. The a <1 is some constant.

The following theorem providing sufficient condition for almost everywhere stability of the

attractor set A in terms of the existence of Lyapunov measure is proved in [11].

Theorem 11. Suppose there exists a Lyapunov measure i with o = 1, then the attractor set

A is almost everywhere stable with respect to any finite measure m that is equivalent to [i.

In the stability theory of dynamical system, we are particularly interested in the case
where the measure m € M(A°) is Lebesgue measure or absolutely continuous with respect to

Lebesgue.

Remark 12. If i is equivalent to Lebesgue measure, then the above theorem provides sufficient
condition for global almost everywhere stability of the attractor set A with respect to Lebesque

measure.

In the problem of DA computation, the set A will not be globally a.e. stable. Hence, it is
of particular interest to provide conditions for the stability of the attractor set A with respect
to initial condition starting from some particular set in X. Towards this we have the following

theorem from [12] involving Lyapunov measure equation.

Theorem 13. Let mp € M(A°) be the Lebesque measure supported on set B C X \ U(e). If
there exists a non-negative measure i € M(AC) which is finite on M(X \ U(e)) for any given

€ > 0 and satisfies following Lyapunov measure equation

[P1pa](D) — (D) = —mp(D)

www.manaraa.com
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for all set D C X\U (e), then almost every (with respect to Lebesgue measure) initial conditions

from the set B lies in the DA of the attractor set A.

2.2 Finite Dimension Approximation

In this section we describe the set oriented numerical methods, developed by Dellnitz and
group [1], for the finite dimensional approximation of the P-F operator. This finite dimensional
approximation of the P-F operator is used for the computation of the Lyapunov measure in
[13]. In this paper, we propose their application for the computation of DA. In order to obtain
a finite-dimensional (discrete) approximation of the continuous P-F operator, one considers a

finite partition of the phase space X, denoted as
Xp={D1,---,Dr}, (2.3)

where U;D; = X. These partitions can be constructed by taking quantization for states in
X. Instead of a Borel o-algebra, consider now a o-algebra of the all possible subsets of X7 .
A real-valued measure p; is defined by ascribing to each element D; a real number. Thus,
one identifies the associated measure space with a finite-dimensional real vector space RY. In

particular for = (u1, ..., puz) € RY define a measure on X as

~—

(2.4)

L
dp(x) = piri(x) )
i=1 ¢

dm(x
m(

~—

where m is the Lebesgue measure and k; denotes the indicator function with support on set
D;.
The discrete P-F approximation arises as a matrix on this “measure space” R and is given

by
m(T~1(D;) N D;)
m(D;)

P = ) (2.5)

m being the Lebesgue measure. The resulting matrix is non-negative and because T': D; — X,
ZJL:1 P;j = 11ie., Pis a Markov or a row-stochastic matrix. Computationally, several short-
term trajectories are used to compute the individual entries P;; . The mapping T is used to

transport M initial conditions chosen to be uniformly distributed within a set D; . The entry
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(a) Eigenvalues (b) invariant measure

Figure 2.1 Eigenvalues and the invariant measure of the discretized P-F
matrix for the Van der Pol oscillator for e = 1

P;; is then approximated by the fraction of initial conditions that are in the box D; after one
iterate of the mapping.

The finite-dimensional Markov matrix P is used to numerically study the approximate
asymptotic dynamics of the Dynamical system 7' [1, 14].

In particular, suppose p > 0 is an invariant probability measure (vector), i.e.,
pP=1-p, (2.6)

such that > u; = 1, then the support of u gives the approximation of the attractor and
wi = p(D;) gives the “weight” of the component D; in attractor A [15]. The dynamically
relevant “almost invariant sets” are associated with the eigenmeasures with eigenvalues close
to 1. And the cyclic behavior within an attractor can be extracted by considering the complex
unitary spectrum of the Markov chain.

As an example, Figure 2.1 depicts the eigenvalues of the P-F operator and the invariant
measure for the Van der Pol oscillator example &1 = v and @y = —21 + €(1 — 22)x2, where
€ is a scalar parameter.

We begin by presenting a decomposition result for the approximation P corresponding to

a finite partition. It is assumed that an approximation g, to the invariant measure p of an
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attractor set A C X, has been computed by evaluating a fixed-point the matrix P. An indexing

is chosen such that the two non-empty complementary partitions
Xo={D1,...Dx}, X1 ={Drt1,...Dr} (2.7)

with domains Xy = Uszle and X; = UjL: 41 D;j distinguish the approximation of the at-
tractor set from its complement set respectively. In particular, A C Xg, po is supported and
non-zero on Xy, and one is interested in stability w.r.t the initial conditions in the comple-
ment X;. For an attractor A with an invariant measure defined w.r.t a neighborhood U D A,
such sets exist for a sufficiently fine partition such that A C Xg C U. The following Lemma

summarizes the matrix decomposition result.

Lemma 14. Let P denote the Markov matriz for the mapping T in Eq. (2.1) defined w.r.t
the finite partition X in Eq. (2.3). Let M = R denote the associated measure space and
denote a given invariant vector of P. Suppose Xy and X1 are the two non-empty components
as in Eq. (2.7) defined w.r.t p such that u > 0 on Xo; ;i > 0 iff D; € Xy. Let My = RE
and M; = RY=K be the measure spaces associated with Xy and X; respectively. Then for the

splitting M = My & My, the P matriz has a lower triangular representation

P= (2.8)
X P1

where Py : My — My is the Markov matriz with row sum equal to one and Py : My — My is

the sub-Markov matriz with row sum less than or equal to one.

Proof. Use the splitting M = My @ M; to express the invariant vector pu = [u°, u!] where,
po € Mg and py € M. By construction, u® > 0 for all entries and p! = 0. Again, use the

splitting to write

pP= (2.9)

In order to prove the result, note that P is non-negative matrix such that
[1°,0] = uP = 1" Po, n* Po).

Since, p¥ > 0 so Py = 0. O
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We remark that this decomposition result does not explicitly require either the existence of
the set U or any property A C Xg C U regarding the partition Xy. These two however ensure
that a) Xy and X} are non-empty and b) the invariant vector is a good approximation of the
invariant measure and hence the underlying attractor.

This finite dimensional approximation of the P-F operator and the above described de-
composition of the P-F operator are used for the computation of Lyapunov measure. While
the existence of infinite dimensional Lyapunov measure implies almost everywhere stability of
the attractor set, the existence of the finite dimensional Lyapunov measure implies a weaker
notion of stability referred to as coarse stability [11].

The coarse stability of the attractor set A is defined as follows:

Definition 15 (Coarse Stability). Consider an attractor A C X together with a finite partition
X1 of the complement set X1 = X\ Xo. A is said to be coarse stable w.r.t the initial conditions
in Xy if for an attractor set B C U C X, there exists no sub-partition S = {Dy,, Ds,, ..., Ds,}

in X1 with domain S = Ufk:lek such that BC S CU and T(S) C S.

For typical partitions, coarse stability means stability modulo attractor set B with DA U
smaller than the size of cells within the partition. In the infinite-dimensional limit, where the
cell size (measure) goes to zero, one obtains stability modulo attractor sets with measure 0

DA, i.e., a.e. stability.

Theorem 16. Assume the notation of the Lemma 14. In particular, A is an attractor set
in Xog C X with approximate invariant measure supported on the finite partition Xy of Xo.
Py is the sub-Markov operator on M(A€). Py is its finite-dimensional sub-Markov matriz
approximation obtained with respect to the partition Xy of the complement set X1 = X \ Xo.

For this

1. Suppose a Lyapunov measure i exists such that P1(B) < a(B) for all B C B(X1), and
additionally i ~ m, the Lebesgue measure. Then the finite-dimensional approximation

P is transient (i.e., lim,_ oo P* =0).

Z2amSupposesPyisstransient then A is coarse stable w.r.t the initial conditions in X .
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In summary, a.e. stability implies P, is transient, while one can only conclude a weaker

coarse stability given transience of P;.

2.3 Domain of Attraction Computation

In this section, we present a numerical scheme based on finite dimensional approximation
of P-F operator for the computation of DA. In [13], we have employed the finite dimensional
approximation of P-F operator for the computation of Lyapunov measure, used for verifying
global almost everywhere stability of the attractor set. There is one key difference between the
numerical scheme adopted for the computation of Lyapunov measure and for the computation
of DA. The difference is that in the computation of Lyapunov measure we discretized the
entire phase space for constructing the finite dimensional approximation of the P-F operator.
Howewver for the computation of DA, we employ an iterative scheme whereby at each step of the
iteration we construct the approximation of the P-F operator only on the small portion of the
phase space X . This iterative feature of the proposed algorithm greatly helps in reducing the
computational burden associated with the approximation of the P-F operator. The iterative
algorithm for the computation of DA can be explained formally with the help of Figure 2.2 as

follows:

Figure 2.2 Scheme for computation of domain of attraction

Step 1: First we identify the attractor set Ay whose DA needs to be computed. The

attractor set Ag along with its neighborhood Xy D Ag is marked as red in Fig. 2.2.
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Step 2: We start with the initial domain Uy D Xy D Ag and let Vy = Uy \ Xo. Vp marked
as green in Fig. 2.2. The objective is to determine the set of initial conditions in V{ that
lies in the DA of the attractor set Ag. We assume that the domain Vj does not contain any
attractor set. This assumption is justified because Uy is the initial domain of investigation
and can always be chosen small enough to ensure non-existence of attractor set other than Ag.
However set of initial conditions in V{ might lie in the DA of attractor set Ag.

Step 3: The domain outside the neighborhood Uy is denoted by Ay and marked with
hashed in Fig. 2.2.

Step 4: With the above labeling, we write the state space X = UyUAg, where Uy = XoUVj.
We consider following partition of the state space X = {D1,...,Dry, Dro+1,- - DNy, DNog+1}
such that Vy = Ufile, Xy = UfV:OLOHDi, and flo = Dn,+1. Note that the entire region flg
is represented by the single cell Dy, from the partition X and hence the finite dimensional
approximation of the P-F operator is essentially constructed on the domain Uj.

Step 5: The domain A is coarsely resolved using the single cell Dr,+1 and hence the
finite dimension approximation of the P-F operator restricted to Ay is a one-by-one matrix.
Since the domain of investigation at this stage is Vj, without loss of generality we can assume

that the 1 x 1 matrix restricted to Ag is Markov. We denote this matrix by P i, With the form

Step 6: The P-F operator restricted to the attractor set Ay is Markov and its finite
dimensional approximation is a (Ng — Lg) x (No — Lo) matrix, denoted by Pjy,.

Step 7: The finite dimensional approximation for the restriction of P-F operator to the
domain Vp is a Ly X Lo sub-Markov matrix and is denoted by Py .

Step 8: Let Py = diag(Pa,, PAo)v which is a Markov matrix from step 5 and 6. The finite
dimensional approximation of the P-F operator on the partition X can hence be written as

p |00 (2.10)
Ry, Py,
Step 9: The sub-Markov matrix Py, is transient because the domain Vj does not contain

any-attractorset-and-hencesthe matrix (I — Py, )~ ! is well defined. There are three possibilities
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for the set of initial conditions in the domain Vj. They are, the set of initial conditions in 1
lies

a) in the DA of attractor set Ayg. We denoted this set of initial conditions by O4,;

b) in the DA of the attractor set which lies in Ag. We denote this set by O Ay’

c¢) on the “boundary” of the two attractor sets Ay and Ay. We denote this set of initial
conditions by O Aol Ao

Step 10: For computing the DA, we need to determine the set O4,. The characterization
of the sets O4,, O i,» and @) Ao|| A, CAN be provided using results from the theory of Markov
chain (Theorem 18).

Step 11: Once Oy, OAo’ and OAoHAo are identified, we proceed to the next step of the
iteration by redefining the new attractor set A; and its neighborhood X := XoUOy4,. A new
domain U; for investigation of DA of A; is chosen to include part of Ay such that A; C Ay

and X = U;UA; = (X1UW) UA;. The choice of Uj is based on the location of the set OAoH/lo'

We now proceed to provide characterization for the above three sets described in step
9 using Markov matrix P. Let the attractor set be A and our goal is to find the set O4.
Without loss of generality we can identify all the cells containing the attractor set A along
with its neighborhood with single cell in the partition X and the associated finite dimensional
P-F matrix as 1 x 1 unity matrix. Hence the finite dimensional approximation of the P-F

operator P at any step of the iteration can be written as

I 0
P= (2.11)

Ry Py
where [ is a 2 x 2 identity matrix. The Markov matrix P is now in the so called canonical
form where the two absorbing states corresponding to the two attractor sets A and A and is
represented by the 2 x 2 identity matrix I and the L transient states in V are represented by
the sub-Markov matrix Pj,. We now state following two standard results from Markov chain

theory from [16], the results of these theorems are used to characterize 04,0, and O AllA-

Theorem 17« Fortheabsorbing Markov matriz (2.11), the sub-Markov matriz Py is transient

www.manaraa.com



19

i.e., lim, oo P — 0) and hence (I — Py)~! is well defined.
14

Theorem 18. Let s1,...,sL denote the transient states and sp and s ; denote the states for
the attractor set A and A respectively in the Markov matriz P. Let b;s and b, ; be the probability
that the Markov chain P be observed in the set sa and s; starting from the transient set s;
respectively. Let B be the matriz with entries b;a and b,z fori=1...L. Then B is a L x 2

matriz, and is given by
B =QvRy (2.12)
where Qy = (I — Py)~L,

Proof. Let [Py]7. denotes the {i,k} entry of the matrix Pj}. We have

L oo
Z Pyl Ry = Z Z[PV]Z@ [Rv ]k

k=1 k=1n=0

M8

L
(Bl = [

3
Il
o

[Qvlik[Rv]k; = [Qv Rv]ij (2.13)

I
M=

>
Il
—_

O

The matrix B can be used to characterize the three sets of interest. In particular the cell
D; that lies in the DA of the attractor set A corresponds to the states s; for which b;4 = 1.

Hence,
OOA:{QS‘GDZ'I bZAzl or b,LA:O},
.(’)A:{xGDii biﬁzl or biAZO};

2.3.1 Procedure for Constructing Markov Matrix from the Sub-Markov Matrix

Consider a domain U C X and a partition X' of U consisting of N cells. Let P € RV*N be
the finite dimensional approximation of the P-F operator constructed on the partition X. If no
trajectory escapes U, then P is a stochastic Markov matrix. However if positive measure set of

he domain U, then P is a sub-Markov matrix. We outline following
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procedure to construct Markov matrix from the sub-Markov matrix. If P is sub-Markov, then
define matrix Py := P. The Markov matrix constructed from sub-Markov matrix P is a
(N +1) x (N + 1) matrix constructed as follows:

P 1-5

P = (2.14)
0o 1

where Py € RM*N is the sub-Markov matrix, 1 € R¥*! is a column vector of all ones,
S € RV*! is a column vector and its entry S; = Z;-V:l(Pf)ij, and 0 € RV is a row vector
of all zeros. The (N + 1) state of P is associated with the attractor set A lying outside the

domain U.

2.3.2 Iterative Algorithm for Computation of DA

Step 1: Let j be the step of iteration and j = 0. Let A; be the attractor set and V; be the
domain under investigation.

Step 2: Compute the finite dimensional approximation of the P-F operator: P € RNi*N; on
Vj.

Step 3: If P is a Markov matrix, then jump to step 4. Otherwise, construct P € R(Vi+1)x(N;+1)
using the construction procedure outlined in subsection 2.3.1.

Step 4: Compute B = (I — PVj)_lRVj. Identify those states which are in DA of A; using the
results and discussion following Theorem 18.

Step 5:

o If DA exists for attractor set A;, say Dj, then enlarge the attractor set A; to incorporate
D; for (j+1)™ step, that is Aj+1 := A;UD;. Include the new domain Vj41 around 444

and redefine j =: j + 1. Jump to step 2.

o If DA for attractor set A; does not exist, then jump to step 6.

Step 6: Stop the program.
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2.4 Simulations for Domain of Attraction

In this section we describe various examples of two and three dimensional continuous and
discrete-time systems consisting of polynomial and non-polynomial vector field. Examples
also include systems with non-trivial attractor set (i.e. not equilibrium points). All compu-
tations are performed using MATLAB on a desktop PC. The MATLAB code written for DA

computation is not optimized for the computation time.

2.4.1 Example for a 2 Dimensional Polynomial System

Example 1: Our first example is that of a polynomial vector field from [4] and is described

by the following set of equations:

il = -2+ 256%%2
(2.15)
ig = —X2
The system has origin as the unique stable equilibrium point. From the phase portrait plot we

see that the second and the fourth quadrant are in DA of x = 0. The curve z1x5 = 1 describes

the boundary of actual DA in the first and third quadrant.

Fig. 2.3 shows the DA marked with red, and the boundary cells are marked with green
for this system. The yellow curves in the second and the fourth quadrant satisfy xizo = 1.
The domain of investigation is chosen to be [—2,2] x [-2,2]. The total simulation time for DA
computation is equal to 8.5 seconds. The total simulation time is a function of many parameters
such as number of cells used for finite dimensional approximation of P-F and number of points
per cell used for the generation of P-F. All these parameters need to be optimized in order to

improve the speed of DA computation.
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-2 -1 0 1 2

(a) DA (in red) and boundary cells (in green) (b) Phase portrait

Figure 2.3 Domain of attraction and phase portrait for Example 1

2.4.2 Example for a 2 Dimensional Non-polynomial System

Example 2: Our second example from [10] is that of a non-polynomial vector field described

by the following set of equations:

1 =—x1 +x2+0.5(e" — 1) (2.16)

T9g = —X1 — T2 + T1X2 + 1 COS T

The origin is a stable equilibrium point of the system. The total simulation time for the DA
computation for this example is 23 seconds. Again DA is marked with red, and the boundary

cells are marked with green in Fig. 2.4.

2.4.3 Example for a 3 Dimensional Polynomial System

Example 3: Our third example from [6] is that of a polynomial vector field described by the

following set of equations:

. 2
T1 = —T1 + X223

To = —X2 + 122 (2.17)
C)'L‘g = —I3

The origin is the unique equilibrium point of this 3 dimensional system and it is a stable

equilibrivm point=-We.choose the domain of investigation for DA to be equal to [—2.1,2.1] x
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-2

4 2 0 2 “

(a) DA (in red) and boundary cells (in green) (b) Phase portrait

Figure 2.4 Domain of attraction and phase portrait for Example 2

[—2.1,2.1] x [-2.1,2.1]. For better visualization we plot the DA from three different angles in

Fig. 2.5 (a), (b), (c). The total simulation time for this example is 104 seconds.

2.4.4 Example for Henon Map
Example 4: Our fourth example is the Henon map described by the following set of equations:

2
T4l = Yn +1—ax
" " " (2.18)
Ynt+1 = by,
where, a = 1.4 and b = 0.3 are two parameters. For those parameter values, Henon map is
chaotic with nontrivial attractor set. Since the chaotic attractor is contained in [—3, 3] x [—1, 1],

the initial domain for computation of DA in the first step of iteration should incorporate

[—3,3] x [-1,1]. The total simulation time for this example is 7.8 seconds.
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Z axis
z axis

; 0
yaxis 2 -2 X axis

(a) DA (in red) and boundary cells (in blue) (b) DA (in red) and boundary cells (in blue)

z axis

0

X axis 2 2 y axis

(c) DA (in red) and boundary cells (in blue)

Figure 2.5 Domain of attraction and boundary cells for Example 3
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Figure 2.6 Domain of attraction (in red) and boundary cells (in green) for
Example 4

2.4.5 Example for Chua’s Equation

Example 5: Our fifth example [17] is the ODE equivalent of Chua’s equation described by
the following set of equations:
i =qr—y+ (P —q)h(z)
Y= qr — 2+ (p2 — g2)h(z) (2.19)
z =gz + (p3 — q3)h(x)

where, h(z) = %(]x—i— 1| — |z —1|), and the parameters p; = 0.3625, po = 1.063125, p3 =

0.2765625, ¢ = —10.2875, g2 = —1.2, g3 = —2.71875.
This system has a chaotic attractor plotted in Fig. 2.7. The phase space we investigate is

[—2.5,2.5] x [-2.5,2.5] x [—2.5,2.5], and the total simulation time is 15 minutes. We plot the

DA from three different angles in Fig. 2.8 (a), (b), (c).
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Figure 2.7 Attractor set for Example 5

Z axis

(a) DA (in red) and boundary cells (in green) (b) DA (in red) and boundary cells (in green)

Z axis

X axis

(c) DA (in red) and boundary cells (in green)

Figure 2.8 Domain of attraction and boundary cells for Example 5
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CHAPTER 3. CONCLUSIONS AND FUTURE RESEARCH

3.1 Conclusions

In the past few years, existing methods of DA computation are Lyapunov function based.
There is no method for DA computation of complex steady state such as chaotic attractor or
sets consisting of quasi-periodic motion.

The transfer operator approach for computation of DA overcomes the shortcomings of
almost all existing methods. An iterative algorithm for the computation of the DA based
on the set-oriented numerical approaches used for finite dimensional approximation of linear
transfer operator has been presented. Simulation results illustrate that the iterative algorithm
can not only characterize the DA for the system with equilibrium dynamics but also system

with complex non-equilibrium dynamics.

3.2 Future Research

Now, we can apply the P-F operator based iterative algorithm to any 2 dimensional or
3 dimensional system. This algorithm is efficient for 2 dimensional systems since in general
computation time is less than 10 seconds. However, computation times for most of the 3
dimensional systems are larger than 10 minutes and thus it is not efficient enough in comparison
to the computation efficiency for 2 dimension system. Thereby, further researches will focus
on improving the efficiency of the iterative algorithm and applying the algorithm to higher

dimensional nonlinear dynamical systems.
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PART 11

EXPERIMENTAL DATA ANALYSIS
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OVERVIEW

Modern experiments and/or simulations in fluid flows generate a large amount of data
containing valuable information that can be used to analyze the dynamics of turbulence. Nev-
ertheless, it is not feasible to analyze the complex flow phenomena directly from raw time
histories of the dynamics. In practice, people use modal decomposition technique to decom-
pose the complex flow structures into modes to automatically extract, organize and classify
the vortical structures (also called coherent structures). The vortical structures hold signif-
icant fraction of the total turbulent energy and affect numerous technologically momentous
processes.

The objective of this part is to compare existing methods and develop novel approaches
for experimental data analysis of the unsteady aerodynamics of the flapping wing microaerial-
vehicle. These methods are developed for the purpose of identification of the beneficial dynam-
ics and for the development of reduced order models for control design. In this part, Proper
Orthogonal Decomposition (POD) method and spectral analysis method based on Perron-
Frobenius (P-F) mode are utilized to analyze experimental data of flapping wings respectively.

We first employ POD method for the data analysis of the PIV measurements in the wakes
of piezoelectric flapping wings. The basic idea behind POD based data analysis method is
to decompose the time series snapshots of PIV measurements into high energy, POD, modes.
The POD modes obtained from the PIV measurement data with different control inputs, such
as flapping amplitude and flight speed, are compared to identify high energy modes that are
invariant across the range of operating conditions. Similarly the modes that are responsible
for maximum energy transfer between the control inputs and the desired output such as lift

and thrust are identified.
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The second method that we propose for the PIV measurements analysis is inspired from
our recent work to develop a novel approach for the spectral analysis of the nonlinear flows.
This new method is based on the spectral analysis of the linear transfer operator, the so
called Koopman operator, associated with any nonlinear flows. The motivation for this work
comes from the desire to perform frequency-based decomposition of the snapshot data as
opposed to energy based decomposition in the POD method. While POD-based data analysis
method captures all modes containing high energy, it ignores the low energy modes. These low
energy modes might play an important role from the dynamics point of view and hence cannot
be ignored. We perform the spectral analysis of the linear transfer, Perron-Frobenius (P-F)
operator, which is dual to the Koopman operator to obtain the frequency based decomposition
of the time series snapshot data. The basic idea behind this approach is to construct the finite
dimensional approximation of the linear transfer (P-F) operator that best describes the time
evolution of the snapshots data. The eigenvalues and eigenvectors of this transfer operator

carry useful information about the system dynamics.
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CHAPTER 4. INTRODUCTION

This introduction is divided into four sections. Section 4.1 briefly introduces the POD
modes, Koopman operator and Koopman modes. Section 4.2 describes the motivations for
experimental analysis of flapping wings. Section 4.3 offers a review of existing papers. Finally,

section 4.4 introduces the experimental set up of flapping wings.

4.1 Preliminaries

4.1.1 Proper Orthogonal Decomposition Mode

The Proper Orthogonal Decomposition (POD), also called the Principal Component Anal-
ysis (PCA), or the Karhunen-Lo eve (KL) decomposition, is a common technique to reduce a
complicated flow behavior to a simpler one and to get the coherent structure of fluid flow.

Suppose we have a finite-dimension space R™ where n is equal to the number of grid points
times the number of the flow variables, and we have a set of data given by z(t) € R", with
0 <t<T. We try to seek a projection P, : R” — R" of fixed rank r to minimize the total

error, given by

T
/ l2(t) — Poa()] dt. (4.1)
0
To this end, we introduce a n x n matrix
T
R= / w(O)e(t)dt (4.2)
0

where * denotes the matrix transpose.

The eigenvalues and eigenvector of R are given by

Rop = Mo, 0< Ay <o < AgL (4.3)
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Since R is a symmetric and positive-semidefinite matrix, all eigenvalues A are real and
nonnegative, and the eigenvectors ¢ may be chosen to be orthogonal. The main result of
POD is that the optimal subspace of dimension r is spanned by ¢1,--- , ¢, and the optimal
projection P, is then given by

k=1
The vectors ¢, 1 < k < r are called POD modes [18].

Furthermore, the energy of projection is given by

T T
| 1Pl at =3 (15)
0 k=1

That is, A\; denotes the kinetic energy of POD mode ¢y.

4.1.2 Koopman Operator and Koopman Mode

Definition 19 (Koopman operator). Let (X, A, ) be a measure space. If S : X — X is a

nonsingular transformation, and f € L. The operator U : L — L™ defined by

is called the Koopman operator with respect to S [19].

The Koopman operator, a infinite dimensional linear operator, has one important property
that for every f € L', g € L*®, (Pf,g) = (f,Ug) so that U is adjoint to the P-F operator P.

Let ¢; be the eigenfunction and A; be the eigenvalue of Koopman operator,

U(bj(l‘) = )\ngj(l‘) (47)

Given a vector-valued observable g(x), we can expand g(x) in terms of these eigenfunctions

as

g(x) =Y ¢(x)V; (4.8)
j=1

where, Vj is called the Koopman mode [20].
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4.2 Motivations for Experimental Data Analysis

4.2.1 Proper Orthogonal Decomposition Mode Analysis

Numerous studies have been conducted in recent years to investigate the flow pattern and
vortex structures in the wakes of flapping wings. The experimental research in fluid flows
generates a large amount of instantaneous data. As we know, POD method uses the spatial or
temporal correlation matrix to compute the eigenfunction, POD mode, and thus decomposes
the structures contained in snapshots from the energy point of view. Using POD method
to analyze the experimental data of flapping wing provides an efficient way to identify high
energy modes that remain invariant across range of operating conditions because POD method
captures more kinetic energy than any other model reduction method given a number of POD

modes.

4.2.2 Spectral Analysis

The motivation for spectral analysis of experimental data is to perform frequency-based
decomposition of the snapshot data as opposed to energy based decomposition in the POD
method. These low energy modes ignored in POD modes might play an important role from
the dynamics point of view. For example, acoustic waves play a critical role in a fluid flow
where acoustic resonances occur even though hydrodynamic pressure fluctuations have larger
energy than acoustic waves.

Besides, the time coefficients of a POD mode contain multiple frequencies. For situations
such as the jet in crossflow where one is interested in studying the dynamics of low-frequency
oscillations, such as wall modes, separate from high-frequency oscillations, such as shear-layer
modes, the POD method is not an efficient method to decouple and isolate the dynamics.
Thus, it would be helpful if one can invent a frequency based modal decomposition method to

identify the dominant frequency from experimental data of fluid flows.
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4.3 Literature Review

4.3.1 Proper Orthogonal Decomposition Mode

POD method is a statistical pattern recognition tool used to remove redundant information
and thus extract useful information from a large amount of data. POD method was first
introduced in turbulence research in [21]. Comprehensive reviews on applications of POD
method to turbulence have been done by [22]. In [23, 24], POD is used in developing low-
dimensional models of fluids. In [25], the reduce order model for the fixed, high angle of attack
flat plate is obtained and compares with direct numerical simulation to show that the reduce

order model preserves qualitative behavior such as coherent structures.

4.3.2 Koopman Mode

In [20], a modal decomposition method for nonlinear flows based on spectral analysis of a
linear operator, called as Koopman operator defined for any nonlinear system, is presented.
Even if the governing dynamics are finite dimensional, the Koopman operator is infinite di-
mensional and does not rely on the linearization of the dynamics. The Koopman operator
captures the full information of nonlinear system. The Koopman modes capture the relevant
frequencies more precisely than global eigenmodes of the linearized dynamics, and decouple

the different frequency components more efficiently than modes determined by POD.

4.4 Experimental Setup of Flapping Wings

The experimental study was conducted in a closed-circuit low-speed wind tunnel located
at the Aerospace Engineering Department of Iowa State University. The tunnel has a test
section with a 1.0 x 1.0 ft (30 x 30 cm) cross section and the walls of the test section are
optically transparent. The tunnel has a contraction section upstream of the test section with
honeycombs, screen structures and a cooling system installed ahead of the contraction section

to provide uniform low turbulent incoming flow into the test section.
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The tested piezoelectric flapping wing has a rectangular platform with the chord length
12.7mm, wingspan 34mm, and thickness 0.26mm.

We use = to denote the horizontal direction and y to denote the vertical direction in this
paper. The domain of velocity field measured is: (z,y) € [—0.7917, 8.6528] x [—3.3889, 3.5000]
inch. The number of grid points of velocity field is 5418 for each snapshot, i.e., 86 grid points
in x direction and 63 grid point in y direction. The distance between two grid points for
horizontal or vertical direction is 0.1111 inch. At each grid point the velocity components
along x and y direction are measured.

In experiment, the flapping frequency of flapping wing microaerial-vehicle is fixed at 60 HZ
since the flapping frequency of micro-flapping bird in nature is approximated to 60 HZ. Thus,
this experiment is an accurate approximation of the flapping flight of micro-flapping bird in
natural environments. While the sampling frequency for non-synchronous data is 3.515556HZ,
the sampling frequency for synchronous data (phase lock PIV data) is fixed at 480HZ.

There are two kinds of control inputs, i.e., flapping amplitude and flight speed, in experi-
ment. Based on the type of control inputs, the experimental data are devided into two classes.
The first class of data is measured at 50% wingspan of flapping wing for different flapping
amplitude, and the second class of data is measured at wingtip for different flight speed. As
for the same control input, the synchronous data and non-synchronous data are obtained.

For convenience, we will use 2 shorthands, 50%120v and 50%200v, to denote these two
classes of data in the following chapters. 50%120v data means that data is measured at the
50% wingspan for small flapping amplitude (The voltage of motor controlling the flapping
amplitude is 120 volt). And 50%200v data means that data is measured at the 50% wingspan
for large flapping amplitude (The voltage of motor controlling the flapping amplitude is 200
volt). In addition, experimental data for flight speed at 0.879m/s, 3.653 m/s and 9.551 m/s

are measured.
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CHAPTER 5. PROPER ORTHOGONAL DECOMPOSITION MODE

In this chapter, we use Proper Orthogonal Decomposition (POD) method to analyze the
experimental data (PIV measurements) and hence to identify the coherent structure in the
wakes of flapping wings.

When we use snapshots to generate the POD modes, we need to figure out how many
snapshots should be used in order to generate the POD mode containing full information in
the sense that if we use more snapshots than current number of snapshots, the vortex structures
in the dominant POD modes (i.e. POD mode 1, POD mode 2, and POD mode 3) will not
change. POD mode 1, POD mode 2, and POD mode 3 are called dominant POD modes since
the summuation of kinetic energy in POD mode 1, mode 2 and mode 3 is more than 99%
of total kinetic energy contained in all POD modes. Moreover, POD mode 1 contains the
largest kinetic energy and the associated eigenvalue is also the largest. Similarly, POD mode 2
contains the second largest kinetic energy and the associated eigenvalue is the second largest,
and so on and so forth.

In this chapter, 120 snapshots which ensure that each POD mode contains enough infor-
mation are utilized to generate POD modes in each case. In each figure of POD mode, we
use different color to characterize different vortex. The magnitude of the value of colorbar
denotes the curl value of vortex, and the sign of value of colorbar denotes the rotation di-
rection of vortex. The negative value in the colorbar denotes that the rotation direction of
vortex is clockwise and the positive value in the colorbar is used to indicate that the vortex is
counter-clockwise.

The organization of the chapter is as follows. In section 5.1, we compare POD modes

of data for different flight speeds and analyze the eigenvalues of dominant POD modes. In
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section 5.2, we compare the POD modes of data for different flapping amplitudes, and analyze

eigenvalues of these dominant POD modes.

5.1 POD Mode of Data for Different Flight Speeds

In this section, we show POD modes of non-synchronous data and synchronous data for
different flight speeds. All data used in this section are measured at wingtip of the flapping

wing.

5.1.1 POD Mode of Non-synchronous Data

) POD mode 2 for 3.653 m/s (f) POD mode 3 for 3.653 m/s

(g) POD mode 1 for 9.55098m/s (h) POD mode 2 for 9.55098m/s (i) POD mode 3 for 9.55098m/s

Figure 5.1 POD modes of non-synchronous data for different flight speeds
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In Fig. 5.1, we plot POD modes of non-synchronous data for different flight speeds. We can
see obvious vortex shedding exists from POD mode 1 to POD mode 3 in each case. Moreover,
the turbulence in corresponding POD modes drastically decrease in the wakes flow with the
increase in flight speed. For example, the turbulence in subfigure (a) is stronger than the
turbulence in subfigure (g). Especially, there almost only exists laminar flow in the wakes of

flapping wing in subfigure (g).

(a) 0.879 m/s (b) 3.653m/s (c) 9.55098 m/s

Figure 5.2 Eigenvalues of POD modes of non-synchronous data for differ-
ent flight speeds

It is interesting to compare the eigenvalues of dominant POD modes generated from non-
synchronous data for different flight speeds since eigenvalue of POD mode equals the kinetic
energy contained in each POD mode. In Fig. 5.2, we plot eigenvalues of all POD modes of
non-synchronous data for different flight speeds. The largest eigenvalues in subfigure (a), (b),
and (c) are equal to 79000, 4400, and 685, respectively. Thus, the eigenvalue of POD mode
1 generated from non-synchronous data decreases with the increase in flight speed of flapping
wing. Besides, the second and third largest eigenvalue also decrease with the increase in flight

speed of flapping wing.

5.1.2 POD Mode of Synchronous Data

In Fig. 5.3, we plot the POD modes of synchronous data for different flight speeds. In
each set of POD modes, vortex shedding occurs naturally. As the flight speed increases, the

turbulence in the wakes of flapping wing decreases distinctly in dominant POD modes.
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(a) POD mode 1 for 0.879m/s  (b) POD mode 2 for 0.879m/s  (c) POD mode 3 for 0.879m/s
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(d) POD mode 1 for 3.653 m/s  (e) POD mode 2 for 3.653 m/s  (f) POD mode 3 for 3.653 m/s

o2

.
"
-—
!
- 02

(g) POD mode 1 for 9.55098m/s (h) POD mode 2 for 9.55098m/s (i) POD mode 3 for 9.55098m/s

Figure 5.3 POD modes of synchronous data for different flight speeds
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Moreover, comparing the corresponding modes in Fig. 5.1 and Fig. 5.3, we can see the
corresponding two modes have the same number of dominant vortices associated with the
largest curl values, and the dominant vortices occur in the same location of velocity field. For
example, there exist 3 dominant vortices structures in subfigure (a) of Fig. 5.1 and Fig. 5.3.
The location of corresponding dominant vortices is the same. And the vortex structures of

corresponding dominant vortices are very similar.

(a) 0.879 m/s (b) 3.653m/s (c) 9.55098 m /s

Figure 5.4 FEigenvalues of POD modes of synchronous data for different
flight speeds

In Fig. 5.4, we plot eigenvalues of POD modes generated from synchronous data for different
flight speeds. The eigenvalues of POD mode 1 are 41000, 4490, and 720 in subfigure (a), (b),
and (c), respectively. Thus, the largest eigenvalue decreases with the increase in flight speed,
and the second and third largest eigenvalues also decrease with the increase in flight speed.

Comparing the corresponding subfigures in Fig. 5.2 and Fig. 5.4, the eigenvalues of corre-
sponding dominant POD modes are different. Nevertheless, the magnitudes of corresponding
eigenvalues are the same. For example, the eigenvalue of POD mode 1 of non-synchronous
data for flight speed 3.653m/s is 4400, and the eigenvalue of POD mode 1 of synchronous data
for flight speed 3.653m/s is 4490.

By far, we know using synchronous data and non-synchronous data for the same flight speed
will generate similar dominant POD modes because it can be observed that the correspond-
ing dominant POD modes have very similar vortex structures and their associated dominant

eigenvalues have the same magnitude.
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5.2 POD Mode of Data for Different Flapping Amplitudes

In this section, POD modes of non-synchronous data and synchronous data for different
flapping amplitudes are compared. All data used in this section are measured at the 50%

wingspan of the flapping wing.

5.2.1 POD Mode of Non-synchronous Data

o 1 2 3 4 s 6 7 8 o 1 2 3 4 5 & 7 8

(a) POD mode 1 for 50% 120v ~ (b) POD mode 2 for 50% 120v  (c¢) POD mode 3 for 50% 120v

o 1 2 3 4 s & 7 8

(d) POD mode 1 for 50% 200v  (e) POD mode 2 for 50% 200v  (f) POD mode 3 for 50% 200v

Figure 5.5 POD modes of non-synchronous data for different flapping am-
plitudes

In Fig. 5.5, we plot the POD modes of non-synchronous data for different flapping am-
plitudes. Apparently, wake turbulence is not affected by the change of flapping amplitude as
opposed to the case of POD modes in Fig. 5.1.

Besides, these corresponding POD modes generated from non-synchronous data for different
flapping amplitudes are very similar. For example, the vortex structure in Fig. 5.5 (a) and (d)

are highly similar except the possible opposite rotation directions for corresponding dominant

vortices.

o AJLb
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(a) 50% 120v (b) 50% 200v

Figure 5.6 Eigenvalues of POD modes of non-synchronous data for differ-
ent flapping amplitudes

In Fig. 5.6, we show eigenvalues of POD modes of non-synchronous data for different
flapping amplitudes. The eigenvalue of POD mode 1 for small flapping amplitude is 4500
and the eigenvalue for large flapping amplitude is 9600. Thus, for the non-synchronous data
for different flapping amplitudes, the eigenvalue for POD mode 1 increases with the increase
in flapping amplitude. In addition, the eigenvalues of POD mode 2 and mode 3 of non-

synchronous data also increase with the increase in flapping amplitude.

5.2.2 POD Mode of Synchronous Data

In Fig. 5.7, we plot POD modes of synchronous data for different flapping amplitudes.
These corresponding dominant POD modes are quite similar. For example, the corresponding
vortex structures in POD mode 1 in subfigure (a) and (d) of Fig. 5.7 are absolutely similar
except opposite rotation directions of corresponding vortices.

Moreover, comparing the corresponding modes in Fig. 5.5 and Fig. 5.7, we can observe the
corresponding two modes have the same number of dominant vortices which occur in the same
location.

In Fig. 5.8, we show the eigenvalues of POD modes of synchronous data for different flapping

amplitudes. The eigenvalue of POD mode 1 for a small flapping amplitude is 4700 and the
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(b) POD mode 2 for 50% 120v  (c) POD mode 3 for 50% 120v

(d) POD mode 1 for 50% 200v  (e) POD mode 2 for 50% 200v  (f) POD mode 3 for 50% 200v

Figure 5.7 POD modes of synchronous data for different flapping ampli-
tudes
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(a) 50% 120v (b) 50% 200v

Figure 5.8 FEigenvalues of POD modes of synchronous data for different
flapping amplitudes
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eigenvalue of POD mode 1 for a large flapping amplitude is 9800. Thus, for these data, the
eigenvalue of POD mode 1 increases with the increase in flapping amplitude. In addition,
the eigenvalues of POD mode 2 and mode 3 are also increase with the increase in flapping
amplitude. In brief, the eigenvalues of dominant POD modes of synchronous data increase
with the increase in flapping amplitude.

Comparing Fig. 5.6 with Fig. 5.8, we observe that although eigenvalues of corresponding
dominant POD modes of synchronous and non-synchronous data are different, their magnitudes
are the same.

Therefore, we can either use synchronous data or non-synchronous experimental data for the
same flapping amplitude to generate the POD modes due to the fact that the corresponding
dominant POD modes have quite similar vortex structures and their associated dominant

eigenvalues have the same magnitude.
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CHAPTER 6. PERRON-FROBENIUS MODE

In this chapter, a new method based on the spectral analysis of the linear transfer operator,
called Perron-Frobenius (P-F) operator, associated with any nonlinear flows, is presented.

The organization of the chapter is as follows. In section 6.1, we introduce P-F operator
and P-F mode. In section 6.2, an algorithm to generate P-F mode from snapshots of nonlinear
fluid flow is presented. In section 6.3, we show the P-F modes of experimental data and then

identify the dominant frequency via spectral analysis of P-F modes.

6.1 P-F Operator and P-F Mode
Consider a dynamical system
Zp+1 = f(xr), where f isinvertible and zj € R" (6.1)
From [19], we have following theorem:

Theorem 20. (Perron-Frobenius operator) Let (X, A, ) be a measure space, f : X — X
an invertible nonsingular transformation (f~' nonsingular) and P the associated Perron-

Frobenius operator. Then for every p; € L,

Poston) = (1)) - | L2 (6:2)

The principle is to analyze the flow dynamics governed by Equ. 6.1 only from available data
using the eigenfunctions and eigenvalues of P-F operator. To this end, let A; be the eigenvalue

of P-F operator P, and ¢;(z) be the eigenfunction of P corresponding to A;,

Poi(z) = N\jpj(x) for j=1,2,-- (6.3)
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By iteration to above equation,

Proj(a) = Np;(z) (6.4)
Besides, we consider a vector-valued observable g : R" — R™ where n is the number of
states and n is a large number. Hence, x; € R™ contains full information about a flow field at
a particular time, g(x) is a vector of any quantities of interest, such as a velocity measurements
at various grid points in the flow.
Thus for the k' vector zy,
Phoj(ar) = Xjpi(on) (6.5)

We expect to expand the vector-valued g(x) in terms of these eigenfunctions by
o0
glx) =) wj(x); (6.6)
j=1

where, ¢;(x) is the P-F eigenfunction and v; is the P-F mode.

Since the transform f(z) is volume preserving, we can get

}df_l(l“k)

=1 .
oy (6.7)

According to Equ.(6.1), Equ.(6.2) and Equ.(6.7), one can obtain

Poj(zr) = 0 (fH(ar)) = ¢j(xr-1) (6.8)

By iteration to above equation,

Proi(xy) = ¢j(x0) (6.9)

From Equ.(6.5) and Equ.(6.9) one know
Poj(ar) = @j(z0) = Njj () (6.10)

j(xy) = ()\ij)kgoj(xo) for A;j#0 (6.11)

Therefore,
glzr) =Y ejler)v = Z%‘(ﬂfo)(y) vj (6.12)
=1 =1 J

The observable g(z) is a linear combination of P-F modes and the coefficients are the
eigenfunctions of P-F operator. )\Lj, where )\; is the eigenvalue of P-F operator, characterizes

he corresponding P-F mode v;.
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6.2 Algorithm for Generation of P-F Mode from Snapshots

Here, we present the Arnoldi algorithm to compute the P-F modes defined in previous
section given only values of a particular snapshots. We will show that the Arnoldi algorithm
actually produces approximations to eigenvalues of the P-F operator when applied to a non-

linear system. First of all, let us assume that one has a linear dynamical system
Xy = BX;_1 (6.13)

where, B € R™" is invertible, i.e., X;_; = B~ !X}, and n is so large that we can not compute
eigenvalues of B directly.

Similar to the approach mentioned in [20], we use the Krylov method, in which one starts
with an initial vector Xy and computes iterates of Xy, to compute the estimations of these
eigenvalues. After m — 1 iterations (m << n), one has a collection of m vectors that span
a Krylov subspace, given by span{ Xy, BXo, B2Xy, -+, B™ 'Xy}. One can find the approx-
imated eigenvalues and eigenvectors by projecting B onto this m-dimensional subspace, and
computing eigenvalues and eigenvectors of the resulting low-rank operator.

We denote the sequence of snapshots by {Xo, X1, , X}, where Xg = z(tp), X1 =
x(to+Ar), Xo=uz(to+2A7), -+, X =2x(to+mAr), Ap is the sampling period and ¢ is
the initial instance to sample data. On the other hand, we define the reverse order snapshots
by

{)/0le7 e 7Ym} - {XmaXm—h o 7X0}7

where, Y; = X,,,_; for i =0,1,2,--- ,m.

If we stack the reverse order snapshots into a n x m Krylov matrix

K = [}/blevYQa”' 7Ym—1]
= [Xm7Xm—1>Xm—27"' aXl]

= [Yo,(B™HYy, (B~ Yo, -+, (B™H)" Y] (6.14)

Then,
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(B_l)K = [B_ly():(B_I)Qva(B_l)?)Yb?”'7(B_1)mYO]

= [H’}é,}%,---’Ym]

= KC (6.15)
where, column vector ¢ = (¢m—1,Cm—2, Cm—3, - ,co)T and matrix C is given by
00 -+ 0 cpma1
1 0 -+ 0 c¢mso
C=101 i 0 ey (6.16)
00 --- 1 Co

For more general case, the snapshots do not come from linear system. That means we can
not assume that the m!” iteration is a linear combination of previous iteration. If so, we have
a residual r between the actual snapshot Y,,, and estimated value Y,, = coYy + c1Y1 4+ coYo +

4 ¢p—1Ym—1 given by Equ.(6.15). The residual r is defined by

m—1
S R S 7 (617)
j=0
The residual is minimized when r is orthogonal to span{Yp, Y7, -+ ,Y,—1}.

In addition, let 3; be the eigenvalues of C and a; be the corresponding eigenvector. Thus,

Ca; = fiai

(BY(Ka;) = Bi(Ka;) since K(Ca;) = (KC)a; = (B™'K)a; (6.18)

The eigenvalues of C constitute a subset of eigenvalues of B~! and the eigenvector corre-
sponding to 3; for B~! is v; = Ka;.

By far, we have converted the problem of computing the eigenvalues of matrix B~ € R*X"?
whose dimension n is so large that we can not directly compute its eigenvalues and eigenvectors

to a more easier problem of computing the eigenvalues and eigenvectors of matrix C € R™*™,
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Although above proof is based on linear system, we can also apply this algorithm to non-
linear system since we have assumed that the residual r exists between the actual observable
X, and the estimated value K¢ = Z;-n:_ol ¢;Yj. What’s more, the residual r is minimized and

it is the best one that we can do according to the projection theorem.

Hereby, the algorithm to compute the P-F modes from snapshots is:

1 Define Krylov matrix K by Equ. (6.14) and find constant vector ¢ such that

m—1
r=Yy—Ke=Yn— Y ¢Y;, rlspan{Yp, Y1, -, Y1}
j=0

2 Define matrix C by Equ.(6.16) and find its eigenvalue \; and eigenvector a;. The frequency

fj corresponding to A; can be obtained by following equation:

B Im{logA;}

fj = AT (6.19)

where, Ar is the sampling period.
3 Define v; = Ka; where v; is the it" P-F mode.

Since P-F operator is a unitary operator and we use finite dimension approximation of the
infinite dimensional linear P-F operator that best describes the time evolution of the snapshots
data, eigenvalues of P-F modes locate on the unit circle on the complex plane. That is, multiple
eigenvalues are 1 and all other eigenvalues are complex conjugates pair whose absolute value

is equal to 1.

6.3 P-F Mode and Dominant Frequency of Experimental Data

In this section, we will show the P-F modes generated from different experimental data. 120
snapshots are used to generate P-F modes in each case. The P-F mode 0 denoting the mean
flow and having the eigenvalue 1 has frequency 0 by Equation (6.19). Since the eigenvalues
associated with P-F mode 2 and P-F mode 3 are complex conjugate leading that the absolute
value of P-F mode 2 and P-F mode 3 are the same, we only show P-F mode 1, mode 2, and

mode 4 in this section.
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In each figure of P-F mode, we use different colors to characterize different vortices. The
magnitude in colorbar denotes curl value of vortex, and sign of colorbar denotes rotation
direction of vortex. The negative value in colorbar denotes that the rotation direction of
vortex is clockwise and the positive value indicates that the vortex has a counter-clockwise

rotation direction.

6.3.1 P-F Mode and Dominant Frequency of Data for Different Flight Speeds

In this section, we show the P-F modes of non-synchronous data and synchronous data for
different flight speeds of flapping wing. Then we identify the dominant frequency of experi-
mental data via spectral analysis of P-F modes. The data used in this section are measured

at the wingtip of the flapping wing.

6.3.1.1 P-F Mode of Non-synchronous Data for Different Flight Speeds

In Fig. 6.1, we plot the P-F modes of non-synchronous data for different flight speeds. It
shows that with the increase in flight speed, turbulence in the wake flows becomes increasingly
vague for corresponding P-F modes. If the flight speed equals to 0.879m/s, vortex shedding is
unavoidable and the flow behind the trailing of flapping wing is turbulent. As the flight speed
increases to 9.55098 m/s, vortex shedding does not occur in the wakes and almost all flows are

laminar flows behind the trailing of the flapping wing.

6.3.1.2 Dominant Frequency of Non-synchronous Data for Different Flight

Speeds

In Fig. 6.2, each subfigure shows the magnitudes of all P-F modes (except the P-F mode
0) of non-synchronous data at each frequency. Since the spectrum is symmetrical with respect
to the y axis (normalized magnitude), only positive frequencies in the x axis are plotted. In
each subfigure, the dominant frequency corresponding to magnitude 1 is close to 0.25 HZ.

In order to understand the significance of 0.25 HZ determined by P-F method, we use the

Fast Fourier Transformation (FFT) to analyze the velocity data recorded at the fixed point
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(a) P-F mode 1 for 0.879m/s (b) P-F mode 2 for 0.879m/s
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(d) P-F mode 1 for 3.653 m/s (e) P-F mode 2 for 3.653 m/s (f) P-F mode 4 for 3.653 m/s
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(g) P-F mode 1 for 9.55098m/s  (h) P-F mode 2 for 9.55098m/s (i) P-F mode 4 for 9.55098m/s
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Figure 6.1 P-F modes of non-synchronous data for different flight speeds
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frequency. frequency frequency

(a) 0.879m/s (b) 3.653 m/s (c) 9.55098m/s

Figure 6.2 Frequencies of P-F modes of non-synchronous data for different
flight speeds
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(a) 0.879m/s (b) 3.653 m/s (c) 9.55098m/s

Figure 6.3 Frequencies of non-synchronous data for different flight speed

with coordinate (0.0972, —0.5) where dominant vortex occurs from observation. The dominant
frequency of the vector field over the whole space can be identified by FFT of the velocity
data.

We can observe the dominant frequency in each subfigure of Fig. 6.3 is closed to 0.25 HZ,
which is the frequency identified by spectral analysis of P-F modes. Thus, it verifies that the
spectrum of P-F modes can identify the dominant frequency of nonlinear flows. Besides, it
shows that the dominant frequency of non-synchronous data for different flight speeds is not

sensitive to the change of the flight speed and is almost constant, 0.25 HZ.

6.3.1.3 P-F Mode of Synchronous Data for Different Flight Speeds

In Fig. 6.4, we plot the P-F modes of synchronous data for different flight speeds. The
turbulence in the wakes becomes increasingly vague with the increase in flight speed. If the
flight speed increases to 9.55098m/s, the fluid flows behind the trailing of flapping wing almost

become laminar.

6.3.1.4 Dominant Frequency of Synchronous Data for Different Flight Speeds

In Fig. 6.5, we plot magnitudes of the P-F modes (except the P-F mode 0) of synchronous
data for different flight speeds at each frequency. The dominant frequency is approximated
to 60 HZ. As we know, 60 HZ is in fact the flapping frequency of flapping wing. This means

we can use the P-F method to identify the flapping frequency from the synchronous data of
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(a) P-F mode 1 for 0.879m/s (b) P-F mode 2 for 0.879m/s (c) P-F mode 4 for 0.879m/s
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(d) P-F mode 1 for 3.653 m/s (e) P-F mode 2 for 3.653 m/s (f) P-F mode 4 for 3.653 m/s
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(g) P-F mode 1 for 9.55098m/s (h) P-F mode 2 for 9.55098m/s (i) P-F mode 4 for 9.55098m/s

Figure 6.4 P-F modes of synchronous data for different flight speeds
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(a) 0.879m/s (b) 3.653 m/s (c) 9.55098m/s

Figure 6.5 Frequencies of P-F modes of synchronous data for different flight
speeds
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flapping wing.
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Figure 6.6 Frequencies of synchronous data for different flight speeds

Once more, we use FFT to check if the spectral analysis of P-F operator determines the
dominant frequency of fluid flow. In Fig. 6.6, the dominant frequency of synchronous data in
each subfigure is equal to 60 HZ according to the FFT of the velocity data recorded at the
point (0.0972, —0.5) where dominant vortex occurs. It verifies that the dominant frequency

obtained from the P-F method is correct.

6.3.2 P-F Mode and Dominant Frequency of Data for Different Flapping Ampli-

tudes

In this section, we show the P-F modes of non-synchronous data and synchronous data
for different flapping amplitudes of flapping wing. Moreover, we utilize the spectral analysis
of P-F modes to identify the dominant frequency of experimental data. All data used in this

section are measured at 50% wingspan of the flapping wing.

6.3.2.1 P-F Mode of Non-synchronous Data for Different Flapping Amplitude

In Fig. 6.7, we plot the P-F modes of non-synchronous data for different flapping ampli-

tudes. It shows that the vortex shedding in the wakes is not evidently affected with the increase

in flapping amplitude.
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(d) P-F mode 1 for 50% 200v (e) P-F mode 2 for 50% 200v (f) P-F mode 4 for 50% 200v

Figure 6.7 P-F modes of non-synchronous data for different flapping am-
plitudes

6.3.2.2 Dominant Frequency of Non-synchronous Data for Different Flapping

Amplitudes

In Fig. 6.8, we plot magnitudes of the P-F modes (except the P-F mode 0) of non-
synchronous data for different flight speeds at each frequency. The dominant frequency is
approximated to 0.25 HZ in each subfigure.

Again, we use FFT to analyze a velocity data by recording velocities at the fixed point
(0.0972, —0.5) where dominant vortex occurs. In Fig. 6.9, we find the dominant frequency is
closed to 0.25 HZ in each subfigure verifying that P-F modes based method can identify the

dominant frequency of nonlinear flows.

6.3.2.3 P-F Mode of Synchronous Data for Different Flapping Amplitudes

In Fig. 6.10, we plot the P-F modes of synchronous data for different flapping amplitudes.

It shows the flapping amplitude has a trivial impact on generation of P-F modes.
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Figure 6.8 Frequencies of P-F modes of non-synchronous data for different
flapping amplitudes

6.3.2.4 Dominant Frequency of Synchronous Data for Different Flapping Am-

plitudes

In Fig. 6.11, we plot the frequencies of synchronous data for different flapping amplitudes.
The dominant frequency is approximated to 60 HZ in each subfigure which is the flapping
frequency of flapping wing.

Once again, we show the frequencies of synchronous data for different flapping amplitudes
in Fig. 6.12 by FFT analysis of the velocity data at point with coordinate (0.0972, —0.5) where
dominant vortex occurs. The dominant frequency is approximated to 60 HZ in each subfigure,

which confirms the dominant frequency in Fig. 6.11.
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Figure 6.9 Frequencies of non-synchronous data for different flapping am-
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Figure 6.12 Frequencies of synchronous data for different flapping ampli-
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CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

Experimental data of flapping wing can be used to generate the POD modes which can
further be used to identify the vortex structures in the wakes of flapping wing. These POD
modes are compared to identify high energy modes that remain invariant across the range of
operating conditions.

About vortex structures and kinetic energy analysis based on POD method, we can draw
following conclusions: First of all, the corresponding dominant POD modes of synchronous
data and non-synchronous data for same control input, i.e., flapping amplitude or flight speed,
have very similar vortex structures and their associated dominant eigenvalues have the same
magnitude. Secondly, the turbulence in the wakes of flapping wing becomes vague with the
increase in flight speed of flapping wing. In contrast, the increase of flapping amplitude will
not affect the turbulence in the wakes. Thirdly, while the energy contained in the dominant
(high energy) POD modes decreases with the increase in flight speed, the energy contained in
the dominant POD mode increases with increase in flapping amplitude.

Contrast to the energy-based POD analysis of vortex structures in the wakes of flapping
wings, we present the frequency-based model decomposition method, P-F method, to inves-
tigate the dynamical behavior of nonlinear systems and then apply this method to analyze
vortex structures in the wakes of flapping wings and characterize the dominant frequency of
experimental data.

We show that P-F modes for nonlinear system can be generated by Arnoldi algorithm
using the reverse order flow. Furthermore, P-F modes is not only used to analyze the vortex

structures but also characterize the dominant frequency of fluid flows. On the one hand, in
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vortex structures analysis the turbulence in the wakes becomes vague with the increase in flight
speed but it is almost unchanged with the increase in flapping amplitude. This conclusion is
consistent with the result of POD analysis in vortex structures. Whereas on the other hand, in
dominant frequency analysis the dominant frequency can be extracted from the experimental
data by P-F method. Especially, the dominant frequency for synchronous data is in fact the
flapping frequency of flapping wing.

Finally, we can draw the conclusion that the integration of energy-based POD method and
frequency-based P-F mode method gives a comprehensive understanding of experimental data

of flapping wings.

7.2 Future Research

As we know, the POD modes are not only used to analyze the spatial structure of vortex in
nonlinear flow but also used to construct the reduced order model of high-dimensional partial
differential equation, for example, Naiver Stokes equations. For future research, we expect to
get the reduce order model by Galerkin projection of the governing Naiver Stokes equations
onto those POD modes generated from experimental data of flapping wing. Then the reduce
order model can be compared to the direct numerical simulation of flapping wing to show

coherent structure in the reduce order model is preserved.
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